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4. Demonstration 

A) Working System 
For this method, the developed software uses MySQL and PHP.  MySQL was the database used to 

store the data from past months and PHP was the language used to write our linear regression program.  
This could have also been developed in C++, but the primary objective of using PHP was to be able to put 
this on the web.  This gave us access to our information from any computer that had access to the Internet.  
 
B) Data Representaion 

The data values were stored in a database in a table called load-forecast.  The table was created in 
MySQL and can be found on our website.  PHP (using SQL commands) was then used to import the 
values from the database and linear regression was performed on them.  A few screen shots of the working 
of the proposed program are shown below. 

The system consisted of eight options and is discussed independently. 
 
 

 
Figure 1: Load Forecasting Main Menu. 
 

C) View Specific Bus 
This was used to display the power load factor values for twelve months for any particular bus.  

Clicking on �View Specific Bus� gave the following menu: 
 
 

 
Figure 2.  View Specific Bus. 
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Now if we chose Bus 3, the load values for this bus were returned (Figure 3).  
 
 

 
Figure 3.  View Load for Specific Bus. 
 
 
D) View All Buses 

In this option, the same task was performed as Option 1, except that it returned the load values for all 
buses instead of a specific bus (Figure 4). 

 
 

 
Figure 4.  View All Bus. 

 
 
 

E) Add A New Bus 
This menu option allowed the user to add a new bus or node to the database.  This option is required to 

grow the system.  Over time, as the number of buses increases, it is needed to constantly update our 
database.  This permits such an update to take place.  
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Figure 5.  Add New Bus. 

 
 

 
Figure 6.  Forecast Specific Bus. 
 
 
F) Forecast Specific Bus 

This option allows the user to forecast load for the next interval, say 13th month for any specific bus 
(Figure 7). 

 
Figure 7.  Load Forecast for Bus 3. 
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G) Forecast a Set of Buses 
This option does the same thing as Option 4 except that it forecasts load values for a set of buses in the 

database.  It sorts the output in the order of fastest growing bus (Figure 8).  It also gives the user an option 
to graph the values to see it in a pictorial format.  The graph (Figure 9) shows both the growth ration of a 
node and the forecasted value. 

 
 

 
Figure 8.  Forecasting a Set of Buses. 

 
 

 
Figure 9.  Graphical load growth. 

 
 

This developed graphing scheme lets the graph be plotted dynamically each time a new value is entered 
or a modification is made to the existing value.  It means if a new bus is added, there is no need to 
manually go into the program and add values to our graph. It will automatically pull the values from the 
database and graph it to give the correct graph. 

H) Upload Data 
This is also another useful feature of the proposed program that not only the user already have a menu 

option to add data in manually, by typing the values for each bus and then adding it to the database, but 
also upload the data from a file.  The program is capable of reading the data from a text file in ASCII 
format and upload it to the table in the database (Figure 10).  



              The Second International Energy 2030 Conference 
 

Abu Dhabi, U.A.E., November 4-5, 2008 328 

 
Figure 10.  Uploading a data file. 

I) Deleting a Bus 
This is an essential option of any database to allow the user to delete a particular bus from the database.  

Figure 11 shows a selection for deleting a bus. 
 

 
Figure 11.  Deleting a Bus. 

J) View Scatter Plot 
This option will allow the user to view the scatter plot of any particular bus.  This was particularly useful if 

the user wanted to see the pattern of the load factor values for a period of time for a specific bus (Figure 12).  
 

 
Figure 12.  Scatter plot. 



              The Second International Energy 2030 Conference 
 

Abu Dhabi, U.A.E., November 4-5, 2008 329 

K) Neural Network Verses Linear Regression  
The result of the forecasted values using linear regression (LR) and a back propagation neural network 

(NN) are compared in Figure 12.  
 

 
Figure 13.  Load forecasted by two methods, LR and NN. 

 

5. Conclusions 

The proposed Web-based load forecasting can be used by utilities to have an easy access to the load 
data in future to manage the generation in interconnected systems.  The easy and fast access to the Internet 
will allow the utilities to predict the amount of power needed to be sold/bought from the grid.  There are 
many methods to predict the load including linear regression and artificial neural network, however the 
linear regression method is easier to be implemented in the Internet. 
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