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Abstract 

The mobilization of residual oil was investigated in glass micromodels consisting of capillary networks 
with water-wet wettability as a function of capillary number (ratio of viscous to capillary forces).  The 
micromodels used in this work had variable pore throat and pore body size distribution.  Experimental 
results demonstrated that the entrapped residual oil blobs have a preferable orientation along the 
macroscopic flow direction of waterflooding.  For substantial mobilization of the waterflood residual oil, 
the corresponding capillary number needs to be 100 times larger than that for the onset of mobilization of 
the largest blobs in place at the end of waterflooding.  The reduced residual oil saturation with increasing 
capillary number obtained in this study is in qualitative and quantitative agreement with published 
capillary number curves for water-wet sandstones.  A key feature of oil blob mobilization at high capillary 
number is the break-up of mobilized blobs to sub-pore size droplets as they flow through the pore network, 
some of which attach to the pore walls and thus making complete mobilization very difficult.  It was 
concluded that glass micromodels offer the potential to screen the best surfactant formulations for EOR 
application using residual oil mobilization experiments and for displacements of continuous oil in place.  

1. Introduction 

A very significant fraction of the oil initially in place in an oil field is permanently trapped at the end of 
waterflooding operations.  This trapped oil is referred to as waterflood residual oil, which is a strong 
function of the pore structure heterogeneities, flooding rate and wettability conditions.  The residual oil 
saturation can be 15% of pore volume in homogeneous unconsolidated sands, and as high as 50% of the 
pore volume in pore systems with vugs and high aspect ratio of pore body size to pore throat size [1-2].  
Because of oil shortages globally, abandoned oil fields are revisited by the oil companies to recover this 
residual oil by applying enhanced oil recovery (EOR) techniques.  The waterflood residual oil is 
recoverable by chemical flooding at high capillary number. The capillary number is defined as the ratio of 
viscous to capillary forces. A key objective of this work was to develop a better understanding of the 
residual oil mobilization process and thus improve the design of chemical flooding projects in water-wet 
and oil-wet reservoirs.  Improved oil recovery technologies in the U.A.E. and elsewhere will become a 
reality very soon, as the producing oil fields will run out of the primary oil recovery phase. 

The advancement of knowledge for the pore scale phenomena of oil trapping and oil mobilization 
mechanisms was made possible based on studies that used micromodels of capillary networks etched on 
glass.  The glass micromodels are made using a microlithography-based technique similar to the making of 
printed circuits boards and microchip manufacturing.  The desired pattern of pore channels is etched on a 
glass plate using hydrofluoric acid.  After inlet and outlet ports are drilled in the etched glass plate, it is fused 
on to another flat glass plate at 725oC, thus creating a sintered two-dimensional glass micromodel with a 
capillary network in place between the sintered glass plates.  This porous medium can be used for studying 
immiscible displacements of oil with water injection [1].  An example of a square capillary network and 
photograph of the selected pores in the micromodel seen under a microscope is shown in Figure 1.  As 
indicated in this figure, the residual oil blobs are found to occupy one to several pores.  The pores with 
residual oil in water-wet media are of generally consisting of predominantly large pore size.  The water phase 
occupies the predominantly smaller pores and the pore corners of space that has residual oil occupancy.  

In this study, attention is focused on the mechanisms of oil recovery by waterflooding, and the 
mobilization of residual oil as a function of flow rate (capillary number).  The model was saturated by water 
first, and the water was then displaced with oil to establish initial oil and connate water conditions.  
Subsequently, the water was injected at a constant injection rate to waterflood the system and establish the 
residual oil condition.  The magnitude of residual oil was monitored as a function of the water injection rate 
by video-recording and image analysis of the microscopic state of residual oil blobs.  After a displacement 
condition, a photograph was taken and the amount of residual oil was determined by image analysis.  A 
commercially available image analysis software, Image Tool, was used for quantitative measurements.   
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Figure 1.  Portion of the micromodel SRC-1 and residual oil blobs seen after waterflooding.   

2. Theory 

The mobilization of trapped residual oil requires the viscous forces across the length of a blob to 
exceed the capillary forces.  Consider the oil blob in a simplified pore network illustrated in Figure 2 with 
water-wet characteristics.  The pressure difference in the water phase from point A to point B must become 
greater than the difference between the drainage capillary pressure at position 1 and the imbibitions 
capillary pressure at position 2, for the oil blob to mobilize in the downstream pore at position B.  
Expressing the capillary pressure using the pore constriction size at location 1 and the pore body size at 
location 2, we can write [1]: 
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where Pm is the required mobilization pressure difference, ow is the oil-water interfacial tension, D1 and 
D2 are the pore throat and pore body diameter respectively, R is the receding contact angle, and A is the 
advancing contact angle.  

The Darcy velocity of the water phase with the residual oil present is governed by Darcy’s law: 
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where vw is the Darcy velocity of water, w is the viscosity of water, Pw/L is the macroscopic pressure 
gradient, K is the absolute permeability and krw is the relative permeability to water.  By equating the 
macroscopic pressure gradient with the capillary pressure difference across the blob divided by the blob 
length lblob, then we have: 
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Figure 2.  A schematic of an oil blob trapped in a water-wet capillary network. 
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Using the above definitions, Equation (3) can be re-arranged as: 
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From the above equation, we see that the macroscopic pressure gradient required for mobilization is 
proportional to the interfacial tension and is inversely proportional to the product of blob length times the 
pore throat diameter.  The larger the interfacial tension, the larger the required pressure gradient for 
mobilization.  On the other hand, the longer the blob length, the smaller the required pressure gradient for 
mobilization.  The pore body to pore throat size ratio is referred to as the aspect ratio, This aspect ratio 
is also an important pore structure parameter.  All other parameters being the same, the larger the aspect 

ratio, the larger the pressure gradient required for oil blob mobilization.  If one combines Equation (5) with 
Equation (2), the following dimensionless expression, known as capillary number, can be obtained [2]:  
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The capillary number is a ratio of viscous forces to capillary forces.  The relative permeability function 
for the relative permeability to water, krw, can be expected to be constant at a given saturation condition for 
systems having similar pore geometry [3]. Therefore, the macroscopic pressure gradient for the flow of 
water in systems having the same residual oil saturation is proportional to (1/K), K being the absolute 
permeability.  For geometrically similar systems such as cubic networks consisting of pore bodies 
interconnected with pore throats of size D1, the absolute permeability is approximated by [2,3]: 

 (7) 

where  is the porosity.  By substituting the  by (96K/ ), and the macroscopic pressure gradient by 
Pw / L = Pm / lblob, it can be found by algebraic manipulations using Equation (6) that: 
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where P is the pressure difference between the inlet pressure and exit pressure of a porous medium of 
length L in residual oil mobilization tests.  The relation of residual oil saturation (ROS) in a porous 
medium as a function of capillary number is known as the capillary number curve.  Based on Equation (8), 
systems that have the same wettability characteristics and microstructure of residual oil will be described 
by the same capillary number curve.  However, variation in the shape of the capillary number curve will 
reflect variation in pore geometry indicated by the values of  and from a sample to sample, and likely 
associated differences due to blob size distribution, which is captured by parameter .  

3. Experimental details 

Capillary number correlations for the mobilization of residual oil from water media are already 
available in the published literature for core samples of sandstone reservoir rocks.  In the present study 
however, it was desirable to determine how representative are the pore network micromodels etched on 
glass as porous media models to describe the capillary number curves for the following two cases: a) the 
mobilization of waterflood residual oil, and b) the displacement of initially continuous oil phase as a 
function of capillary number.  Furthermore, the visualization of the residual oil microstructure with 
capillary number in micromodels was another objective to provide experimental evidence of the break-up 
of the oil blobs during the residual oil mobilization process. 

 
3.1 Porous media and fluids used 

Two glass micromodels of pore networks with a square lattice topology having different pore structure 
at the pore scale were utilized as test porous media.  Details of the fabrication technique of two-
dimensional network micromodels etched on glass are given elsewhere [1].  Pictures of sections of them 
appear in photographs of waterflooding tests performed as indicated in the various figures that appear in  
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The procedure for obtaining the capillary number curve for the displacement of continuous oil was as 
follows.  High initial oil saturation was established as in Step 1.  The micromodel was then flooded at a set 
water injection flow rate and a photograph was taken after there was no further oil movement in the 
micromodel.  The model was then cleaned and re-saturated with water, followed by establishing high 
initial oil saturation again.  Subsequently, the micromodel was waterflooded at a higher water injection 
rate.  This was repeated again to collect 8 to 10 data points for generating the capillary number curve for 
the displacement of continuous oil.  

 
3.3 Image analysis of residual oil 

The residual oil remaining in place was determined by image analysis of the digital photographs taken 
at the end of each displacement condition [5].  The colored image of the micromodel with residual oil was 
converted into gray scale and then manual threshold was applied using the image analysis software so that 
the blobs in the threshold image appear to be the same size as the residual oil objects in place to the 
observer doing the analysis.  Then the image analysis software reports the area of black objects (blobs) in 
the image.  The maximum area of the blobs in the picture corresponded to the low capillary number 
displacement test, and for displacement tests at higher capillary number the area of blobs is smaller.  It was 
assumed that the projected area of isolated oil blobs is proportional to the volume occupied, as the depth of 
etching is fairly constant [5].  Thus, we used the maximum area of the isolated blobs to normalize the 
residual oil fraction remaining in place at any given flow rate (or capillary number) condition.  The term 
(Sor/S*or), is the ratio of residual oil saturation established at a particular flow rate relative to the low 
capillary number waterflood residual oil saturation, S*or. 

4. Experimental Results and Discussion 

The advancement of the waterflooding process to the state of normal waterflood residual oil saturation 
attained at the lowest injection rate was monitored by video recording and still photos taken at various 
stages.  Figure 4 illustrates that during waterflooding in a water-wet porous medium, there is a preferential 
selection of the relatively small pores where water imbibes and the trailing oil/water interfaces are in the 
relatively large pores.  The residual oil is seen to be predominantly trapped in the larger pores in the pore 
network in the form of isolated oil blobs involving one to several pore bodies.  Furthermore, the length of 
the oil blob structures tends to longer along the direction of displacement.  Typical results obtained in our 
experiments conducted at the Institute’s facilities for the residual oil remaining in place as a function of 
flow rate are as shown in Figure 5 for a small section of the micromodel SRC-1.  After trapping the oil in 
this micromodel at an injection rate of 0.1cm3/min, the mobilization process was monitored by taking 
pictures at the end of each step-wise increase in water injection rate.  As seen in the few pictures shown in 
Figure 5, there is very little change in the residual oil content as the flow rate was set at 0.4 cm3/min 
although some oil blobs were locally mobilized a bit.  However, at increased flow rates it is observed that 
the large residual oil blobs are broken-up into smaller segments and by the stage where the flow rate was 
5cm3/min there are no branch like blobs any more.  Further increase in flow rate causes more residual oil 
mobilization as well as more smearing of blobs creating sub-blob size oil droplets.  

A display of the residual oil fraction remaining in place as a function of capillary number for the 
mobilization experiments using micromodel SRC-1 is shown in Figure 6.  At a capillary number of about 
5x10-5 we see some reduction of the normal waterflood residual oil saturation and for a capillary number 
greater that 5x 10-4, about half or more of the original residual oil has been mobilized.  These results are in 
agreement with capillary number curves for mobilization of residual oil in sandstones reported in the 
literature1.  As seen in this plot, there is a significant mobilization of residual oil after we exceed a critical 
capillary number value. 

Results of residual oil mobilization using micromodel SX-4 are shown in Figure 7.  The characteristics 
of mobilization are very similar to those found in the mobilization experiments using micromodel SRC-1. 
Repeat experiments of mobilization of residual oil in micromodel SX-4 are very reproducible as seen from 
the results of runs 1 and 2 in Figure 7.  Results obtained for the displacement of the continuous oil as a 
function of flow rate are shown in Figure 8.  The residual oil remaining in place as a function of water 
injection rate for the displacement of initially continuous oil is similar to that for the mobilization 
experiment.  There is a minor difference on the magnitude of residual oil remaining in place at the low 
flow rate-end for displacement of initially oil continuous case, as compared to the residual oil mobilization 
test, as this is evident from inspection of results shown for both cases.  Therefore, there is some gain in oil 
recovery by waterflooding at higher capillary number for the oil initially being a continuous phase.  At 
flow rates higher than 1cm3/min in the tests using the micromodel SRC-1, there appears to be no major 
difference between the two cases in the fraction of oil remaining in the micromodel.  This behavior is also 
found to be in agreement with results in the published literature [2].  
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The effect of the oil-water interfacial tension was also examined.  Figure 9 is a set of the pictures 
showing the residual oil microstructure at different conditions of waterflooding and mobilization.  The 
surfactant was a hand -washing liquid in the laboratory.  About 1wt% aqueous solution was made of it and 
this surfactant solution was injected as a slug in the inlet tube leading to the model’s inlet fitting.  This slug 
was driven into the micromodel by water injection at constant rate using the ISCO syringe pump.  As it is 
seen from Figure 9, the very low injection rate surfactant flooding produced the residual oil microstructure 
which is similar to that obtained with much higher interfacial tension normal waterflooding shown in 
Figure 5 at the rate of 0.1cm3/min.  Similarly, the state of residual oil remaining with surfactant flooding 
carried out at 1cm3/min and shown in Figure 9 is very similar to that obtained at no surfactant conditions 
with the flow rate at 10 cm3/min shown in stage (c).  These results are in qualitative agreement because the 
corresponding capillary numbers at these different velocities are the same for the low oil-water interfacial 
tension in surfactant flooding case compared to the capillary number corresponding to high flow rate 
mobilization without surfactant conditions [2].  

When it comes to surfactant flooding at high capillary number, the residual oil that has not being swept 
away is seen to consist of tiny oil droplets of size smaller than the pore dimensions, yet this residual oil 
remains in place because of some finite contact angle they are attached to the pore walls.  An example of 
this is the picture shown in Figure 10, taken with the micromodel under the microscope.  It is evident that 
this type of residual oil remaining at a capillary number of about 5x10-3 is difficult to mobilize.  For high 
capillary number conditions, there are locations in the water flow pathways that can retain attached to the 
pore walls these oil droplets.  The water relative permeability at this condition approaches unity value, as 
reported in literature [4]. The results of this study have helped in providing direct evidence as to the reason 
why the relative permeability value to water at reduced residual oil conditions approaches unity at water 
saturations of 90% PV. 

 

 
Figure 10.  Close-up of oil droplets at high capillary number in SX-4. It is evident that this type of residual 
oil is very difficult to mobilize with water flowing past them. 

5. Conclusions 

The mobilization of residual oil observed in glass micromodels was made possible using image 
analysis to quantify the fraction of residual oil remaining in place at a constant injection rate of water.  The 
capillary number curves obtained in this work are original and found to be in agreement with published 
results for water wet sandstones.  It was also found that at capillary numbers greater than 10-3, the reduced 
residual oil is held in the pore space in the form of oil droplets that have a size normally smaller than the 
pore body size.  These results demonstrate that micromodels have great potential for specialized core 
flooding tests and can be used to study various EOR processes in addition to oil blob mobilization.  
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